Почему снимки получаются нерезкие и как это исправить (FAQ по резкости). Как делать резкие фотографии Как фокусироваться чтобы весь кадр был резким

Вы устали от размытых изображений? Значит настало время узнать, как делать резкие снимки, найдя точку наилучшего восприятия вашего объектива. Это придаст вам больше уверенности, сэкономит время и поможет делать фотографии лучшего качества.

В этой статье вы узнаете:

  • Как найти точку максимальной резкости вашего объектива (для более резких снимков)
  • Почему следует фотографировать в режиме Приоритет диафрагмы (и как его использовать)
  • Как выполнить тест для получения резких фотографий
  • Насколько важна точка максимальной резкости объектива? Обратите внимание на разницу

На приведенных выше изображениях часов то, что справа, более резкое. Присмотритесь внимательнее к словам и листьям за часами. Изображение, сделанное при f/9 более резкое, так как было сделано с использованием точки наилучшего восприятия. При f/3.5 снимок не такой резкий.

Сначала взгляните на свой объектив

В этом руководстве для начинающих мы будем использовать в качестве примера зум объектив начального уровня. Большинство комплектных объективов (базовые объективы, которые поставляются с зеркальными цифровыми камерами), как правило, производят самые резкие снимки на средних диапазонах настройки диафрагмы. Чтобы определить его для вашего объектива, нужно знать его самую широкую (максимальную) диафрагму. Это значение вы найдете сбоку или в конце объектива, и это будет выглядеть примерно так 1:3.5-5.6.

Например, это мой зум объектив Canon 18-55 мм.

Это означает, что при минимальном зуме самая широкая диафрагма будет f/3.5. А на максимальном самая широкая диафрагма составит f/5.6.

Правило поиска той самой точки максимальной резкости в середине диапазона состоит в том, чтобы отсчитать два полных f-шага (настройки диафрагмы обозначаются как f-шаг или иначе f-стоп) от самой широкой диафрагмы. На моем объективе она составляет f/3.5. Два полных шага отсюда приведут меня к точке максимальной резкости - около f/7.

Используйте эту таблицу для подсчета вашего f-шага

Схема Робина Пармара

Существует некоторое пространство для маневра в этом среднем диапазоне, поэтому фотографии в диапазоне от f/7 до f/10 будут резкими. Когда вы определите средний диапазон своего объектива, сможете сделать простой тест для получения самых резких изображений. Чтобы провести этот тест, необходимо перевести камеру в режим Приоритет диафрагмы.

Возьмите камеру под контроль с помощью режима Приоритета диафрагмы

Съемка в режиме Приоритет диафрагмы позволяет вам установить диафрагму на ваше усмотрение, что обеспечит больше творческих возможностей, чем Автоматический режим. Контролируя настройки диафрагмы, гораздо проще создать резкие снимки, и так как камера все еще самостоятельно выбирает ISO (если вы установили ISO в режим Авто) и выдержку автоматически, использовать его очень легко.

Вы, наверное, слышали, что значения диафрагмы f/16 или f/22 лучше всего подходят для того, чтобы все изображение было в фокусе. Даже если это и может оказаться правдой, фокус не всегда означает резкость по всему изображению. Выбрав диафрагму в средних диапазонах, изображение будет резким повсюду. Вы можете улучшить их еще больше путем устранения сотрясания камеры с помощью штатива и пульта дистанционного спуска затвора (или функции автоспуск в камере).

Вот пример того, как использование точки наилучшего восприятия вашего объектива даст более резкие изображения.

В приведенных выше разделенных изображениях то, что сделано при f/9 резче, чем то, что сделано при f/22. Иголки и тени не такие мягкие или размытые, как в том, что снято при f/22 (посмотрите также на "хрусткость" и сияние снега).

Переключение с автоматического режима на режим Приоритета диафрагмы

Для того, чтобы переключить камеру из автоматического режима в режим Приоритет диафрагмы, нужно повернуть большой диск Режимы на Приоритет диафрагмы. Вот как это выглядит на моей камере Canon (на камерах Nikon и других брендов ищите A).

Автоматический режим – это зеленый прямоугольник; Приоритет диафрагмы обозначается Av (или A на Nikon). Когда переключитесь в режим Приоритет диафрагмы, поверните главный диск (показан здесь сверху на моем Canon), чтобы установить f-шаг.

При прокручивании этого диска на экране вы увидите, как меняется f-число. На следующем изображении установлено f/9.5.

Выполните тест точки маскимальной резкости

Установите камеру на штатив и проведите тест точки наилучшего восприятия объектива, который займет всего несколько минут. Чтобы начать, установите камеру в режим Приоритет диафрагмы, затем скомпонируйте кадр и сделайте фотографии при разных значениях диафрагмы. Начните с самой широкой, затем поверните диск несколько раз (вправо), чтобы выбрать другое значение. Продолжайте делать это до тех пор, пока не сделаете семь или восемь фотографий.

Загрузите фотографии в компьютер и увеличьте. Вы быстро определите, какие настройки диафрагмы дают резкость по всему изображению.

Фотография девочки была сделана при естественном освещении. Съемка с использованием точки наилучшего восприятия дала мне достаточно резкое изображение даже в условиях низкого освещения.

При приближении чашки хорошо видно преимущество знания точки наилучшего восприятия. Всякий раз, когда вы хотите получить очень резкое изображение, сделайте снимок в каждом из значений среднего диапазона - f/7, f/8, f/9, и f/10.

Получение четких изображений

Теперь, когда вы знакомы с точкой наилучшего восприятия вашего объектива, наступает время практиковаться. Я надеюсь, что вы будете так же удовлетворены результатами, как и я!

Я люблю фотографировать при естественном освещении; изучив, как сделать снимки резкими в условиях низкой освещенности, я стала более довольна своими фотографиями.

  • Фотографируйте в режиме Приоритет диафрагмы;
  • Выбирайте диафрагму в среднем диапазоне (обычно от f/7 до f/10);
  • Используйте штатив и пульт дистанционного спуска затвора (или автоспуск вашей камеры), чтобы устранить шевеленку;
  • Делайте серию снимков в диапазоне от f/7 до f/10, когда резкость особенно важна.

Но не останавливайтесь на этом. Продолжайте экспериментировать с настройками в режиме Приоритет диафрагмы. Это потрясающе получить резкость по всему изображению, но есть гораздо больше, чем настройка диафрагмы.

Хотите мастерски управлять вашей фотокамерой и объективом и получать отличные фотографии? Тогда кликните по картинке ниже и узнайте, чему вас сможет научить пошаговый видео самоучитель по фотографии.

Резкость - один из самых важных критериев качества изображения. Однако, зачастую мы сталкиваемся с ее недостатком. Причины могут быть разные, но главная из них - это ошибка фотографа. В этой главе я буду рассказывать скорее не про резкость, как таковую, а о причинах ее отсутствия и как с этим бороться.

Нерезкость из-за движения (шевеленка)

Самая главная причина нерезкости - это шевеленка, то есть смазанность картинки из-за того, что в момент съемки рука фотографа дрогнула. Результат шевеленки выглядит примерно так:

Жалкое зрелище, согласитесь. Основные факторы, вызывающие появление шевеленки приведены ниже:

  1. Съемка при плохой освещенности без штатива и без вспышки
  2. Съемка с большим фокусным расстоянием (с сильным "приближением")
  3. Съемка в движении, например, из окна автомобиля
  4. Съемке быстро движущихся объектов

Если в условиях съемки присутствует только один из факторов, фактор, то с ним почти всегда можно справиться. Но если их сразу несколько, мы практически гарантированно получаем бракованный фотоснимок.

Для первых двух факторов (съемка при слабом освещении с рук, съемка с большим фокусным расстоянием) работает правило "безопасной выдержки".

Безопасная выдержка с большой вероятностью обеспечит отсутствие шевеленки. Она зависит от фокусного расстояния. Во многих источниках приводится простая формула, по которой можно рассчитать "безопасную" выдержку - нужно единицу поделить на фокусное расстояние. То есть, при фокусном расстоянии 50 мм, безопасная выдержка будет 1/50 секунды. Все это замечательно и просто, но это правило не учитывает, что фотоаппарат может иметь кроп-фактор, который сужает угол зрения и как бы увеличивает фокусное расстояние объектива. Объектив 50 мм на кропе 1.6 имеет эквивалентное фокусное расстояние 80 мм. Как рассчитать безопасную выдержку, скажем, для фокусного расстояния 24 мм не кропе? Без калькулятора не обойтись! Я предлагаю простой, но эффективный способ.

Смотрим на шкалу фокусных расстояний объектива:

При фокусном расстоянии 24 мм, следующая риска соответствует 35 мм. Безопасную выдержку считаем по ней, предварительно округлив значение в большую сторону. Таким образом, безопасная выдержка для 24 мм на кропе 1.6 будет составлять 1/40 секунды. Проверяем в калькуляторе - 24 мм * 1,6 = 38,4. То есть, абсолютно тоже самое - безопасная выдержка 1/40 секунды!

При увеличении фокусного расстояния безопасная выдержка пропорционально сокращается. То есть, для ЭФР 50 мм безопасная выдержка составляет 1/50 секунды, для 300 мм - 1/300 секунды. Это объясняет, почему телеобъектив без стабилизатора может быть использован без штатива только солнечным днем.

Стабилизатор изображения (IS, VR, Antishake) здорово облегчает жизнь, удлиняя безопасную выдержку в 2-3 раза. То есть, телеобъектив 300 мм с включенным стабилизатором позволяет получать преимущественно резкие фотографии уже при выдержке 1/100 секунды.

Разумеется, многое еще зависит от физических способностей фотографа. Кому-то удается получать четкие снимки на выдержках в 1/5 секунды без штатива, кому-то не хватает для этого и 1/500!

Съемка из окна автомобиля - очень плохие условия, которых следует избегать любой ценой. Помимо того, что часто съемка ведется сквозь стекло (что резкости не добавляет), композиция на подобных снимках почти всегда отсутствует. Чисто документальная съемка, но я не видел ни одного художественного кадра, сделанных их окна движущегося авто.

Съемка движущегося объекта может быть решена двумя способами - либо с очень короткой выдержкой, либо с удлиненной выдержкой с проводкой.

Мы знаем, что сократить выдержку можно двумя способами - открытием диафрагмы и повышением чувствительности ISO. Для съемки быстро движущихся объектов (например, проезжающих мимо автомобилей) почти всегда нужно делать и то и другое. Картинка при этом выглядит статичной - автомобиль как будто стоит. Чтобы передать движение используется прием - съемка с проводкой.

Фото Сергея Тишина

Обратите внимание, как замечательно на фотографии передано движение за счет характерного размытия заднего плана. Как это сделать? Для съемки движущегося объекта с проводкой нужно выполнить кое-какие действия по настройке фотоаппарата:

  1. Устанавливаем режим серийной съемки
  2. Устанавливаем режим приоритета выдержки (TV, S) и фиксируем выдержку в районе 1/30-1/60 секунды. Чем длиннее выдержка, тем более динамичным будет размытие заднего плана, но при этом возрастает риск шевеленки на переднем плане. Больше скорость - короче выдержка.
  3. Автофокус переводим в следящий режим.

Когда объект приближается к нам, берем его в "перекрестие" и начинаем серийную съемку, стараясь удержать этот объект в центре кадра. Представьте себе, что у вас в руках не фотоаппарат, а пулемет, а объект - низколетящий вражеский самолет, который нужно "сбить" :) Чем больше скорость серийной съемки, тем больше будет серия фотографий, из которой можно выбрать наиболее удачные.

Нерезкость из-за особенностей оптики

1. "Хронический" промах автофокуса

Явление, когда автофокус постоянно стремится навестись чуть ближе или чуть дальше, чем нужно, называется фронтфокус и бэкфокус (соответственно).

Больше всего фронт/бэкфокус портит жизнь любителям снимать портреты, макро, а также фотографам, занимающимся предметной съемкой. При съемке с близкого расстояния даже небольшой промах автофокуса существенно повышает процент брака. Например, мы знаем, что при съемке портрета резкость наводится на глаза. Даже если точка подтверждения фокусировки мигнула там где надо, из-за бэкфокуса резкость будет реально наводиться на уши, при фронтфокусе - на кончик носа (возможны и более серьезные промахи).

Как выявить фронт/бэкфокус? Вариантов много. Во-первых - воспользоваться специальной мишенью для проверки автофокуса. Она выглядит таким образом:

Однако, такая мишень есть только в фотомагазинах и воспользоваться ей можно, в основном, получается только при покупки нового объектива (или фотоаппарата). Прелесть мишени в том, что по ней очень легко определить не только наличие погрешности, но и точную ее величину.

Во-вторых, можно скачать табличку для проверки фронт/бэкфокуса воспользоваться ей. Это можно сделать на сайте www.fotosav.ru .

Ну, и в-третьих - самый простой вариант! Просто сфотографируйте лист печатного текста, предварительно сфокусировавшись на определенной строке или заголовке. При этом нужно открыть диафрагму до максимально возможного значения и выставить такую чувствительность ISO, чтобы выдержка была не короче 1/100 (чтобы исключить шевеленку). Фотографировать примерно с такого ракурса:

Стрелочкой на листе бумаги показана строка, на которую наводился автофокус. Как видите, в данном случае он сработал правильно. Для верности лучше повторить эксперимент раз 5.

Однако, иногда бывает, что все эти пять раз аппарат фокусируется не туда, куда надо.


Так выглядит фронтфокус


А так выглядит бэкфокус

Что делать, если обнаружен фронт/бэкфокус?

Если фронт/бэкфокус выявляется при покупке объектива, от такого экземпляра лучше отказаться и попросить другой - и так до тех пор, пока результат проверки вас не устроит. Но как быть, если дефект выявлен уже после покупки?

Сейчас некоторые зеркалки имеют функцию микроподстройки автофокуса, при помощи которой фронт/бэкфокус можно исправить не выходя из дома. Однако, у большинства аппаратов этой функции нет, поэтому придется отнести фотоаппарат со всем парком оптики на юстировку в сервисный центр. Да-да! Всю вашу технику! Если мастер "настроит" ваш аппарат под конкретный объектив, не факт, что остальные ваши объективы будут работать так же корректно, как и раньше.

2. Кривизна поля изображения

У большинства объективов заметно, что резкость картинки в углах фотографии отличается от резкости по центру, причем в худшую сторону. Особенно сильно эта разница проявляется на открытой диафрагме. Давайте рассмотрим причину этого явления.

Когда в более ранних главах речь шла о глубине резко изображаемого пространства (ГРИП), имелось в виду пространство снаружи объектива, то есть где-то в окружающей среде. Но, не стоит забывать, что зона ГРИП есть и по ту сторону объектива, там где затвор и матрица.

В идеале матрица полностью попадает в зону ГРИП (внутренней), но вся беда в том, что поле изображения (отмечено на рисунке пунктиром) имеет не плоскую, а немного выгнутую форму:

Именно из-за этого четкость картинки по углам изображения будет ниже, чем по центру. Что самое печальное, что - врожденный дефект объектива, который нельзя исправить никакими настройками. Известно, что подобное падение резкости по углам картинки присутствует у объектива Canon EF 24-70mm f/2.8L USM первой версии. Во второй версии объектива данный недостаток был устранен, но это вызвало существенное удорожание объектива.

3. Сферическая аберрация

Сферическая аберрация в фотографии проявляется как смягчение изображения из-за того, что лучи, падающие на край линзы фокусируются не на самой матрице, а чуть ближе чем нужно. Из-за этого изображение точки превращается в размытое пятнышко. Особенно сильно это проявляется на открытой диафрагме. На средних значениях диафрагмы у большинства объективов сферическая аберрация сходит на нет.

В портретной фотографии дает интересный эффект в зоне размытия - размытый задний план имеет характерный "закрученный" рисунок (боке). Сама по себе картинка даже в зоне резкости выглядит очень мягко.

Обратите внимание, что пятнышки от светлых объектов в зоне размытия имеют не круглые, а чуть вытянутые, напоминающие по форме кошачьи глаза. Этот эффект иногда так и называют - "кошачьи глазки".

Для уменьшения сферических аберраций в объективы вставляют асферические элементы.

4. Дифракционное размытие

Из предыдущего пункта следует, что для получения наилучшей резкости следует прикрывать диафрагму. Другой вопрос - до какого значения и есть ли какой-то разумный предел?

Рассмотрим пример. Я только что сделал три снимка текста на экране монитора, объектив Canon 50mm f/1.8, дистанция съемки около 50 см. Съемка велась с разными диафрагмами. Привожу 100% кроп, расположенный в районе центра кадра:

1. Диафрагма 1.8 (отправная точка). Резкость не ахти, на открытой диафрагме сильны сферические аберрации, они смягчают картинку:

2. Диафрагма 5.6 (промежуточное положение)

Видно, что детализация стала намного лучше, чем при максимально открытой диафрагме! Причина тому - уменьшение эффекта сферической аберрации. Что же, уже хорошо. Можно предположить, что чем сильнее закрыта диафрагма, тем лучше детализация? Давайте попробуем зажать диафрагму до максимума!

3. Диафрагма 22 (диафрагма зажата до максимума)

Что случилось? Почему детализация так снизилась? Оказывается, вывод, который мы сделали - преждевременный. Мы совершенно забыли о таком явлении, как дифракция .

Дифракция - это свойство волны чуть менять свое направление при прохождении ей препятствия. Свет - ни что иное, как электромагнитная волна, а препятствие - это границы диафрагменного отверстия (апертуры). Когда диафрагма открыта, дифракция практически никак себя не проявляет. Но при закрытой диафрагме волны распространяются примерно таким образом:

Ясно, что изображение "идеально резкой" точки в этом плане превратится в чуть размытое пятнышко. Именно дифракция и является причиной снижения резкости картинки при чрезмерном закрытии диафрагмы.

Для большинства объективов для зеркалок APS-C график отношения детализации к диафрагменному числу выглядит примерно так:

В вертикальной оси - баллы как в школе: 2 - плохо, 5 - отлично.

Из графика следует, что максимальная детализация (в зоне резкости) достигается при диафрагмах от 5.6 до 11. При меньшем диафрагменном числе картинку портит сферические аберрации, при большем - дифракция. Однако, это вовсе не означает, что нужно все снимать с диафрагмой 8. Зачастую, разница в детализации не столь уж и значительна, зато при открытой и закрытой диафрагме могут появляться интересные художественные эффекты. При открытой диафрагме - это приятная мягкость в портрете, хорошее размытие заднего плана. При закрытой - характерные звездочки вокруг источников яркого света.

Нерезкость из-за хлопка зеркала

Как известно, зеркальный затвор при срабатывании вызывает небольшое сотрясение корпуса фотоаппарата, которое при определенных условиях может стать причиной небольшой потери резкости.

Чтобы избежать этого, в большинстве зеркалок есть функция "блокировка зеркала " или "предварительный подъем зеркала ". Суть его состоит в том, что для съемки требуется нажать кнопку "спуск" не один, а два раза. При первом нажатии с поднимается зеркало (оптический видоискатель при этом становится черным), при втором - происходит съемка.

Очень показательный пример приведен в небольшой статье на сайте www.fotosav.ru , где проведено сравнение двух фотографий, сделанных без блокировки зеркала и с блокировкой.

Левый фрагмент взят из снимка, снятого в обычном режиме, правый - с блокировкой зеркала.

В тесте участвовал довольно старый фотоаппарат Canon EOS 5D, у него затвор действительно, очень шумный и когда он срабатывает, руки отчетливо чувствуют вибрацию. Затворы современных зеркалок более совершенны в плане вибронагруженности, поэтому риск подобного смазывания картинки намного меньше. У некоторых аппаратов есть "тихий" режим, в котором затвор срабатывает немного медленнее, но вибраций при этом намного меньше, четкость картинки лучше.

Нерезкость из-за неправильного использования стабилизатора

Стабилизатор - устройство, позволяющее уменьшить шевеленку при съемке с рук. Однако, иногда он может навредить.

В инструкции к объективу со стабилизатором почти всегда есть предупреждение – выключайте стабилизатор при съемке со штатива. Часто этим правилом пренебрегают, а напрасно. Подносили когда-нибудь микрофон к колонке? После этого происходит самовозбуждение усилителя и динамики начинают свистеть. Получается точно как в поговорке "много шума из ничего". Со стабилизатором то же самое. Он призван противодействовать вибрации, вызванной шевеленкой, однако на штативе ее не возникает. Тем не менее, вращающиеся гироскопические элементы стабилизатора вызывают небольшую вибрацию, которая воспринимается как шевеленка и стабилизатор пытается ее погасить, «раскачиваясь» при этом все сильнее и сильнее. В итоге, картинка получается нечеткой.

Есть мнение, что стабилизатор может снижать резкость картинки при дневной съемке с рук. Может быть это и так, но я не припомню на своем опыте ни одного случая, когда включенный стабилизатор заметно испортил бы резкость при съемке с короткой выдержкой. Хотя, в интернете регулярно пишут о пагубном влиянии стабилизатора, например, при макросъемке. Аргументы приводятся следующие:

  1. Обратная шевеленка - на незначительное сотрясение камеры стабилизатор реагирует слишком сильно и вызывает смещение картинки в обратном направлении.
  2. Заметный толчок при включении стабилизатора становится причиной нерезкости снимка. Стабилизатор включается, когда мы делаем полунажатие кнопки спуска (чтобы сфокусироваться) и работает до тех пор, пока кадр не будет сделан. Если сразу нажимать кнопку спуска до отказа, то, действительно, стабилизатор может вызвать смаз картинки. Если дать стабилизатору секунду, чтобы он "успокоился", то риск получения смазанной картинки уменьшается. Многое зависит еще и от объектива. Например, у Canon 75-300 IS USM стабилизатор включается с отчетливо различимым стуком и вызывает заметную вибрацию, а у Canon 24-105L – практически бесшумно.
  3. Микровибрация от гироскопов снижает четкость картинки. Опять же многое зависит от объектива – в дешевой оптике (Canon 75-300), действительно, вибрация ощутима. В Canon 24-105L вибрация практически отсутствует.

Лично я предпочитаю отключать стабилизатор в тех случаях, когда в нем нет нужды, но, главным образом для снижения энергопотребления. Стабилизатор действительно помогает в тех случаях, когда при съемке с рук выдержка становится длиннее безопасной и в то же время не хочется повышать чувствительность ISO. В остальных случаях он бесполезен.

Стабилизатор также бесполезен при съемке подвижных объектов. Он всего лишь компенсирует вибрации, передаваемые на фотоаппарат от ваших рук, но он не в силах замедлить движение бегущего человека, который попал в кадр. Стабилизатор помогает лишь при съемке статичных сцен. Сколько бы ступеней экспозиции не компенсировал стабилизатор, При длинной выдержке движущиеся объекты неминуемо получатся размытыми.

Некорректная настройка параметров изображения

В получении визуально нерезких изображений может быть виноват не только объектив, но и сам фотоаппарат, точнее, его настройки. В настройках параметров изображения у фотоаппарата есть пункт резкость или sharpness , который определяет степень контрастности границ объектов на фотографии.

Данная настройка актуальна только при съемке в JPEG. Если вы предпочитаете формат RAW, то желаемый уровень программной резкости (шарпинга) можно установить в программе, используемой для конвертации из RAW в JPEG.

С увеличением программной резкости нас может подстерегать неприятный сюрприз – рост уровня шума. Посмотрите на два фрагмента одной и той же фотографии, приведенных в 100% масштабе.

Первая картинка – со стандартными настройками резкости, на второй внутрикамерный шарпинг вывернут на максимум. Вторая картинка визуально воспринимается более четкой, однако, она и более шумная.

Контрольные задания

1. Научитесь вычислять безопасную выдержку.

2. Попробуйте сделать снимок со штатива с длинной выдержкой с включенным и выключенным стабилизатором, сравните результаты и сделайте выводы.

3. Найдите в инструкции к вашему фотоаппарату функцию блокировка зеркала и научитесь ей пользоваться.

4. Попробуйте снять один и тот же сюжет с разными значениями диафрагмы (со штатива). Выясните, при каких значениях диафрагмы ваш объектив дает самую резкую картинку.

5. Попробуйте поснимать при дневном освещении с включенным и выключенным стабилизатором (в широкоугольном положении). Сделайте вывод относительно целесообразности использования стабилизатора при хорошей освещенности и небольшом фокусном расстоянии.

Нет устоявшегося определения для термина шевелёнка. В данном контексте будем считать, что это смаз изображения при съемке статичного объекта, вызванный движением (сотрясением) камеры. Причиной нестабильности камеры, как правило, является грубое нажатие на спусковую кнопку или дрожание рук. Чтобы избежать шевелёнки при съемке с рук выдержка должна быть короче , чем

где ЭФР — эквивалентное фокусное расстояние (эквивалент для 35-мм пленки). Для Canon EOS 400D кроп-фактор равен 1,62, тогда ЭФР = f*1,62, где f — фокусное расстояние объектива (обычно указано на лицевой части). Например, для f=55 мм ЭФР=(55*1,62)=89 мм (максимальное фокусное китового объектива). В этом случае при съемке с рук выдержка должна быть короче 1/89 секунды (например, 1/125 с).

Для того чтобы уменьшить выдержку приходится снимать на более открытых диафрагмах или увеличивать ISO. Кстати, увеличение чувствительности матрицы (ISO) не всегда плохо — лучше получить резкое изображение , пусть и немного зернистое, чем смазанное (рис. 1).


Canon 300D, f=50 мм, ЭФР=80 мм, f/8, съемка с рук
ISO 100, 1/25 с, изображение смазано ISO 400, 1/100 с, изображение резкое

Рис. 1. При ISO 100 выдержка составила 1/25 с, условие Tv < 1/ЭФР не выполнено — кадр получился смазанным. Увеличение ISO до 400 единиц позволило сократить выдержку до 1/100 с (в 4 раза) и избежать "шевеленки" — кадр получился резким

Совет : для предотвращения шевеленки и достижения наилучшей резкости используйте штатив! При этом кнопку спуска лучше нажимать не вручную, а использовать автоспуск или дистанционный пульт (годится для статичных сцен). Дополнительно для предотвращения сотрясения камеры, вызванного перемещением зеркала, необходимо включить предварительный подъем зеркала (функция блокировки зеркала есть не у всех камер).

Примечание : при съемке с рук нужно плавно нажимать на спуск! Примерно так, как нажимают на спусковой курок Олимпийские чемпионы по стрельбе. Движется только палец на спуске, камера должна оставаться неподвижной. В дополнение приведу рекомендации из книги Дж. Уэйда "Техника пейзажной фотографии": "Встаньте, расслабившись: ноги слегка врозь, вес равномерно распределен на обе ноги, камера у глаза и локти плотно прижаты к телу. Наведите объектив на резкость, задержите дыхание и медленно нажмите на спуск затвора, концентрируя внимание только на движении пальца. Не делайте глубокого вдоха и не задерживайте дыхание во время наводки на резкость и кадрирования. Это только ухудшит дело. Дышите нормально и только ненадолго задержите дыхание, когда нажимаете спуск затвора".

Дополнение от Eugene Glushko (связано с шевеленкой из стрелковой практики). Иногда шевеленка (промах) возникает вследствие поспешного опускания фотоаппарата (винтовки). Чтобы избежать этого, стрелкам рекомендуется после выстрела, не меняя изготовки, еще несколько секунд держать мишень на мушке. Фотографам тоже рекомендуется не опускать резко камеру, а немного задержать взгляд в видоискателе. Когда нет возможности использовать штатив (или монопод), можно воспользоваться различного рода опорами — парапетом, спинкой скамейки, прислониться к дереву, сесть, уперев руку в колено, лечь на землю. В общем, что позволяют условия и сюжет.

2

Объект съемки движется — выдержку короче

Если объект съемки подвижен , то для получения резкого снимка нужна короткая выдержка. Обычно при съемке неподвижного человека ставят выдержку не длиннее 1/60 с, для резвого ребенка может не хватить и 1/200 с. А чтобы "заморозить" движение в спорте понадобиться 1/500 с или короче.

Иногда для достижения художественного эффекта размытия (эффекта движения) специально делают длинную выдержку (рис. 3).

Примечание : смаз быстро движущегося объекта в кадре зависит не только от выдержки, но и от типа затвора. В большинстве современных цифровых зеркальных камерах применяется шторный затвор. Несмотря на то, что он позволяет достигать очень коротких выдержек (например, для 400D минимальная выдержка 1/4000 с) при съемке быстро движущегося объекта происходит его искажение. Дело в том, что шторки всегда движутся с одной и той же скоростью независимо от выдержки. Выдержка определяется задержкой между движениями первой и второй шторки. При коротких выдержках (короче 1/200 - 1/250 с) вторая шторка начинает движение раньше, чем первая дойдет до конца — экспонирование происходит через движущуюся щель между обеими шторками. В результате движущийся объект успевает сместиться в кадре от начала экспонирования до его окончания, что может привести к его искажению. Такие искажения слабо заметны и не играют роли при обычном фотографировании.

Для уменьшения такого ограничения шторного затвора в некоторых цифровых камерах применяется электронный затвор, представляющий собой не отдельное устройство, а принцип дозирования экспозиции цифровой матрицей. Выдержка определяется временем между обнулением матрицы и моментом считывания информации с нее. Применение электронного затвора позволяет достичь более коротких выдержек (в том числе и выдержки синхронизации со вспышкой) без использования более дорогостоящих высокоскоростных механических затворов. Примером может служить камеры Nikon D70/D70s/D50, у которых комбинированный электронно-механический затвор позволяет снимать в режиме синхронизации со вспышкой (X-синхронизация) на выдержках до 1/500 с. Для сравнения: у Canon 400D выдержка X-синхронизации составляет 1/200 с, у Canon 30D — 1/250 с, у Canon 1D Mark III — 1/300 с, у Canon 1D — 1/500 с, у Nikon D80 — 1/200 с, у Nikon D3 — 1/250 c.

3

Неверные настройки камеры — проверьте параметр резкости (Sharpness)

Проверьте в настройках камеры значение параметра резкости (Sharpness). Он не должен быть равен минимальному значению (рис. 4)!

Для цифры всегда приходится повышать резкость . Перед матрицей установлен антиалиасный фильтр, который специально немного размывает изображение (см. статью Дмитрия Рудакова "Резкость... без галстука"). При минимальном значении параметра Sharpness картинка будет очень "мягкой " (рис. 5). Обычно такая установка (ноль для 400D) предполагает, что резкость будет повышаться более аккуратно при дальнейшей обработке снимка.

Рис. 5. Влияние параметра резкости (Sharpness) при съемке в JPEG: Canon 400D, EF-S 18-55, f=18 мм, f/5,6, 1/400 с, ISO 100

Внимание! Установка резкости влияет только на выдаваемый камерой JPEG (не RAW!). Но при этом "родной" RAW-конвертор считывает значение параметра Sharpness из EXIF и использует его как начальную установку (по крайней мере, для камер Canon).

Выше шла речь о так называемом повышении резкости при вводе (Capture Sharpening). Для цифры — это конвертация из RAW (при съемке в JPEG это делает сама камера). Кроме этого резкость приходится повышать при выводе (Output Sharpening). Сюда относится подготовка изображения для печати (например, для струйного принтера приходится "шарпить" сильнее, чем для минилаба), а так же уменьшение изображения для публикации в сети (вывод на экран). Брюс Фрейзер, известный специалист по цифровой обработке, выделяет третью стадию — избирательное повышение резкости (Creative Sharpening). Например, в лицевом портрете для акцентирования внимания на глазах их обычно делают немного резче. Эти и другие вопросы повышения резкости при обработке изображения оставим для отдельной статьи.

Примечание . Фильтр перед матрицей, который немного размывает изображение часто называют антиалиасным или оптическим low-pass фильтром. Этот термин используется скорее не по назначению, а по аналогии. Сам фильтр служит для уменьшения цветовых артефактов и муара в мозаичных матрицах (использующих шаблона Байера) и более правдоподобного преобразования монохромного RAW-изображения в цветное.

Надо отметить, что у камер различных производителей степень влияния "антиалиасного" фильтра различна. Например, замечено, что у Nikon этот фильтр меньше размывает изображение, чем у Canon. Отсюда часто можно слышать "звенящая резкость Никона" или "Nikon D80 резче, чем Canon 30D" и т.п. Это не значит, что Canon менее резок. Просто для достижения Nikon-овского уровня резкости на Canon-е придется задать более высокое значение параметра Sharpness. Кстати говоря у Canon перед матрицей целых три low-pass фильтра.

У некоторых камер вообще нет антиалиасного фильтра, например, у Leica M8. Но за это можно поплатиться. При детальном рассмотрении изображения с Leica M8 на некоторых фактурах, а также в зоне нерезкости, появляется шершавость, как будто фото сняли через какую-то сетку (и это при низком ISO, когда шумы минимальны!). У некоторых камер low-pass фильтр "выключается" опционально, например, у Mamya ZD

Стоит упомянуть также о трехслойной матрице Foveon. В отличие от мозаичного шаблона здесь каждый пиксель "честный" и фиксирует все три составляющих цвета (RGB). Теоретически такая матрица дает наиболее резкую картинку и обеспечивает наиболее точную детализацию при 100%-ом масштабе изображения. На сегодняшний день эта технология почти не развивается и представлена единственной выпускаемой камерой SIGMA SD14 (разрешение 2640x1760 — 4 мегапикселя).

4

ГРИП мала

ГРИП — глубина резко изображаемого пространства. Нерезкие снимки могут быть обусловлены малой глубиной резкости. Например, для китового объектива на длинном конце f=55 мм при f/5,6 ГРИП будет порядка 7 см (при расстоянии до объекта съемки порядка 1 м). Соответственно объекты за пределами ГРИП будут размыты .

На эту размытость, как правило, жалуются те, кто привык фотографировать цифрокомпактом, у которого большая ГРИП и все объекты в зоне резкости. Малая глубина резкости является одним из преимуществ камер с большой матрицей и обычно используется в художественных целях для придания снимку объема. Размытый задний план позволяет "отделить" объект съемки от фона (рис. 6).

Большинство согласится, что удобно пользоваться центральной точкой фокусировки: наводим центр видоискателя на объект, фокусируемся (нажимаем спуск наполовину), затем компонуем кадр и делаем снимок (выжимаем спуск полностью). Однако здесь есть подводный камень: поворот камеры при кадрировании может привести к потере резкости на объекте съемки (рис. 7).

Рис. 7. Кадрирование поворотом камеры может привести к потере резкости на объекте съемки

Есть несколько способов избежать подобной ошибки:

  • выбирать точку фокусировки вручную (но это не очень удобно: крутить каждый раз колесико);
  • не поворачивать камеру, а смещать параллельно плоскости объекта съемки;
  • использовать ручную фокусировку (MF);
  • увеличить ГРИП прикрыв диафрагму (но при этом уменьшается размытие заднего плана).

Причиной смещения ГРИП может быть и промах автофокуса. К примеру вы наводились по глазам, а резкими получились уши (бэк-фокус) или нос (фронт-фокус). В этом случае камеру или объектив придется отдавать на юстировку.

Примечание . Фактически блоки сенсоров автофокуса несколько больше чем обозначены меткой в видоискателе. Это можно проиллюстрировать простым примером: начертим на белом листе две линии — одну тонкую, другую толстую (см. рис. 8, а). Расположим камеру под острым углом к листу, ось объектива перпендикулярна линиям. Если при наведении по тонкой линии более контрастная, толстая линия окажется за пределами метки в видоискателе (красная рамка), но в пределах зоны сенсора (обозначено зеленым цветом), то камера может сфокусироваться по этой контрастной линии (рис. 8, б). Такая нормальная работа автофокуса часто расценивается как бэк-фокус. Если же в зоне сенсора автофокуса останется только одна контрастная деталь, то "ложного" бэк-фокуса не происходит (рис. 8, в). Вот почему нельзя проводить тест на бэк-фокус фотографируя линейку — шкала должна располагаться на некотором расстоянии от мишени.

Рис. 8. Фрагмент снимка, поясняющий работу автофокуса: красным цветом обозначена рамка в видоискателе, зеленым — фактический размер сенсора автофокуса

5

Объектив мылит — прикройте диафрагму или смените объектив

Этот тот случай, когда разрешающей способности объектива не хватает для получения резкого изображения. Чем меньше пиксель у матрицы, тем сильнее проявляется "мыльность" оптики. Например, у 400D размер фотосенсора 5,7 мкм, а у 300D фотосенсор 7,4 мкм (что почти в 1,7 раза больше по площади!). Соответственно при съемке "мыльным" объективом (при одних и тех же условиях) у 300D картинка будет лучше (четче), чем у 400D (рис. 9).

Рис. 9. Китовый объектив EF-S 18-55 II сильно мылит на 400D и не позволяет полностью задействовать потенциал 10-ти мегапиксельной матрицы: детализация не намного выше, чем у 6-ти мегапиксельного 300D, а местами даже хуже (фактура теряется из-за размытия). Параметры съемки: f=18 мм, f/3,5, 1/1000 с, ISO 100, конвертация из RAW с помощью Capture One

Примечание : в процессе эксперимента было замечено, что 400D при одной и той же выдержке давал более темное изображение, чем 300D. Возможно это связано с тем, что фактическая чувствительность матрицы у 300D выше, чем выставленная на табло (такое, например, замечено у камер 20D и 5D — установка ISO 100 фактически соответствует чувствительности ISO 125.

Один из вариантов "побороть" мыльность объектива — это прикрыть диафрагму на 2-3 ступени. В этом случае аберрации уменьшаются, и картинка становится резче (рис. 10).

Рис. 10. С прикрытием диафрагмы уменьшается размытие, особенно по углам, и снимок становится резче: Canon 400D, f=18 мм, ISO 100, конвертация из RAW с помощью Capture One

Еще вариант — использовать более резкий объектив . Например, если на 400D поставить макрик EF 100 2,8 MACRO USM (один из самых резких объективов Canon), то получим заметный прирост деталей по сравнению с 300D (рис. 11).

6

Дифракционное размыливание — слишком малая диафрагма (дырка)

На полностью открытой диафрагме объектив наиболее подвержен аберрациям (мылит сильнее). Поэтому приходится прикрывать диафрагму. И казалось бы на f/22 мы должны получить наиболее резкую картинку. Однако этого не происходит! У 400D уже начиная с диафрагмы f/11 резкость начинает падать из-за дифракционных эффектов — идеальная "точка" размывается в дифракционное пятнышко. Размер этого пятнышка становится соизмерим с пикселем матрицы (5,7 мкм). Отсюда делаем еще один вывод: чем меньше пиксель матрицы тем уже диапазон рабочих диафрагм. Например, для 400D наибольшая резкость китового объектива в широкоугольном положении получается на диафрагме f/5,6 - f/8.

Теоретически оценить "максимально допустимую диафрагму", начиная с которой начинается дифракционное размыливание, можно как d x 2 , где d — размер фотосенсора, мкм. Итак, для 400D получим 5.7 x 2 = 11.4; для 5D — 8.2 x 2 = 16.4. Вообще говоря, размер фотосенсора не так просто узнать. Его можно вычислить примерно — разделить длину матрицы на количество пикселей. Однако более достоверную информацию можно получить только у фирмы-изготовителя. Так, например, если верить Canon у 1D Mark III размер пикселя (7.2 мкм при 10 МПкс) меньше чем у 1D Mark II N (8.2 мкм при 8 МПкс), а размеры фотосенсоров одинаковые. Конструктивно матрица 1D Mark III имеет меньшее расстояние между ячейками сенсоров (см. рис. 13).

Для того чтобы оценить визуально дифракционное "размыливание", достаточно сделать серию снимков при различных значениях диафрагмы. Ниже приведены 100%-ные кропы изображений полученных камерами с разными размерами пикселя: EOS 5D и EOS 400D. Показаны наиболее резкие участки (зона резкости) денежной купюры с мелким текстом. Использовался один и тот же объектив EF 100 f/2.8 MACRO USM, соблюден один и тот же масштаб (соблюден примерно, для 400D даже получилось чуть крупнее).

Как видно из рис. 14 чем больше размер пикселя, тем сильнее можно прикрыть диафрагму без существенной потери резкости. Так, у 5D (пиксель 8,2 мкм) диафрагма f/16 вполне рабочая. Такой же примерно по резкости снимок на 400D (пиксель 5,7 мкм) соответствует диафрагме f/11.


Av 5D 400D
2.8
4
5.6
8
11
16
22

Рис. 14. Падение резкости из-за дифракционных эффектов на камерах с различным размером пикселя: Canon EOS 5D и 400D, конвертация из RAW с помощью DPP (установки по умолчанию)

Выводы

  • Успех получения резкого снимка зависит от правильной выдержки , диафрагмы и умелого использования глубины резкости .
  • Увеличение числа мегапикселей современных цифровых камер повышает требования к оптике и сужает диапазон рабочих диафрагм.

В этом уроке я покажу вам, как можно изменять фокус на фото, делая тем самым заметнее главные детали фото. Как правило, этот эффект может быть сделан фотоаппаратом. Но что, если перед нами уже готовая фотография?

Шаг №1 . Для примера было выбрано фото японского блюда. Открываем его в программе и начнем наш урок:

Шаг №2 . Теперь нам нужно решить, на какую часть фото мы сделаем фокусировку. Пусть это будет наше блюдо. Берем инструмент Elliptical Marquee Tool и создайте круглое выделение вокруг тарелки, похожие на это:

Шаг №3 . Идем в меню Select -> Modify -> Feather (Выделение -> Модификация -> Растушевка или нажмите Shift+F6 ) установите значение в 50 пикселей.

Затем выберите инструмент Sharpen Tool , установите прочность: 30% и выберите мягкую круглую кисть около 400 пикселей. Теперь несколько раз проведите кисточкой в центре нашего выделения, чтобы придать больше резкости блюду:

Шаг №4 . Сделаем инверсию выделения, нажмите Ctrl + Shift + I . Теперь применим фильтр Filter -> Blur -> Gaussian Blur (Фильтр -> Размытие -> Размытие по Гауссу) с такими настройками:

Шаг №5 . Теперь нужно сделать плавный переход от размытия к центру тарелки. Выберите в меню Select -> Inverse , чтобы инвертировать выделение назад, потом идем в Select -> Modify -> Expand и устанавливаем значение в 100 пикселей.

Шаг №6 . Инвертируем выделение еще раз и применяем Filter -> Blur -> Gaussian Blur (Фильтр -> Размытие -> Размытие по Гауссу) со следующими настройками:

Шаг №7 . Теперь для лучшего восприятия добавим размытию черно-белый градиент. Нажмите Ctrl + J , чтобы скопировать выделенную область на новый слой и обесцветьте его Image -> Adjustments -> Desaturate (Изображение -> Коррекция -> Обесцветить или нажать Shift + Ctrl + U ).

Нет устоявшегося определения для термина шевелёнка. В данном контексте будем считать, что это смаз изображения при съемке статичного объекта, вызванный движением (сотрясением) камеры. Причиной нестабильности камеры, как правило, является грубое нажатие на спусковую кнопку или дрожание рук. Чтобы избежать шевелёнки при съемке с рук выдержка должна быть короче , чем

где ЭФР — эквивалентное фокусное расстояние (эквивалент для 35-мм пленки). Для Canon EOS 400D кроп-фактор равен 1,62, тогда ЭФР = f*1,62, где f — фокусное расстояние объектива (обычно указано на лицевой части). Например, для f=55 мм ЭФР=(55*1,62)=89 мм (максимальное фокусное китового объектива). В этом случае при съемке с рук выдержка должна быть короче 1/89 секунды (например, 1/125 с).

Для того чтобы уменьшить выдержку приходится снимать на более открытых диафрагмах или увеличивать ISO. Кстати, увеличение чувствительности матрицы (ISO) не всегда плохо — лучше получить резкое изображение , пусть и немного зернистое, чем смазанное (рис. 1).


Canon 300D, f=50 мм, ЭФР=80 мм, f/8, съемка с рук
ISO 100, 1/25 с, изображение смазано ISO 400, 1/100 с, изображение резкое

Рис. 1. При ISO 100 выдержка составила 1/25 с, условие Tv < 1/ЭФР не выполнено — кадр получился смазанным. Увеличение ISO до 400 единиц позволило сократить выдержку до 1/100 с (в 4 раза) и избежать "шевеленки" — кадр получился резким

Примечание : при съемке с рук нужно плавно нажимать на спуск! Примерно так, как нажимают на спусковой курок Олимпийские чемпионы по стрельбе. Движется только палец на спуске, камера должна оставаться неподвижной. В дополнение приведу рекомендации из книги Дж. Уэйда "Техника пейзажной фотографии": "Встаньте, расслабившись: ноги слегка врозь, вес равномерно распределен на обе ноги, камера у глаза и локти плотно прижаты к телу. Наведите объектив на резкость, задержите дыхание и медленно нажмите на спуск затвора, концентрируя внимание только на движении пальца. Не делайте глубокого вдоха и не задерживайте дыхание во время наводки на резкость и кадрирования. Это только ухудшит дело. Дышите нормально и только ненадолго задержите дыхание, когда нажимаете спуск затвора".

Дополнение от Eugene Glushko (связано с шевеленкой из стрелковой практики). Иногда шевеленка (промах) возникает вследствие поспешного опускания фотоаппарата (винтовки). Чтобы избежать этого, стрелкам рекомендуется после выстрела, не меняя изготовки, еще несколько секунд держать мишень на мушке. Фотографам тоже рекомендуется не опускать резко камеру, а немного задержать взгляд в видоискателе. Когда нет возможности использовать штатив (или монопод), можно воспользоваться различного рода опорами — парапетом, спинкой скамейки, прислониться к дереву, сесть, уперев руку в колено, лечь на землю. В общем, что позволяют условия и сюжет.

Забавная ссылка от barinvic (с форума ХЭ): http://www.metacafe.com/watch/1041948/1_image_stabilizer_for_any_camera_lose_the_tripod/ — это небольшое видео (96 сек), где паренек вместо штатива использует приспособление в виде веревки с винтом и кольцом. Кольцо прижимает ногой, а винт ввернут в камеру (в гнездо под штатив). Перед тем как делать снимок, он натягивает веревку. Сам еще не пробовал, если кто попробует — расскажите, плиз, о результатах.

2

Объект съемки движется — выдержку короче

Если объект съемки подвижен , то для получения резкого снимка нужна короткая выдержка. Обычно при съемке неподвижного человека ставят выдержку не длиннее 1/60 с, для резвого ребенка может не хватить и 1/200 с. А чтобы "заморозить" движение в спорте понадобиться 1/500 с или короче.

Иногда для достижения художественного эффекта размытия (эффекта движения) специально делают длинную выдержку (рис. 3).

Примечание : смаз быстро движущегося объекта в кадре зависит не только от выдержки, но и от типа затвора. В большинстве современных цифровых зеркальных камерах применяется шторный затвор. Несмотря на то, что он позволяет достигать очень коротких выдержек (например, для 400D минимальная выдержка 1/4000 с) при съемке быстро движущегося объекта происходит его искажение. Дело в том, что шторки всегда движутся с одной и той же скоростью независимо от выдержки. Выдержка определяется задержкой между движениями первой и второй шторки. При коротких выдержках (короче 1/200 – 1/250 с) вторая шторка начинает движение раньше, чем первая дойдет до конца — экспонирование происходит через движущуюся щель между обеими шторками. В результате движущийся объект успевает сместиться в кадре от начала экспонирования до его окончания, что может привести к его искажению. Такие искажения слабо заметны и не играют роли при обычном фотографировании.

Для уменьшения такого ограничения шторного затвора в некоторых цифровых камерах применяется электронный затвор, представляющий собой не отдельное устройство, а принцип дозирования экспозиции цифровой матрицей. Выдержка определяется временем между обнулением матрицы и моментом считывания информации с нее. Применение электронного затвора позволяет достичь более коротких выдержек (в том числе и выдержки синхронизации со вспышкой) без использования более дорогостоящих высокоскоростных механических затворов. Примером может служить камеры Nikon D70/D70s/D50, у которых комбинированный электронно-механический затвор позволяет снимать в режиме синхронизации со вспышкой (X-синхронизация) на выдержках до 1/500 с. Для сравнения: у Canon 400D выдержка X-синхронизации составляет 1/200 с, у Canon 30D — 1/250 с, у Canon 1D Mark III — 1/300 с, у Canon 1D — 1/500 с, у Nikon D80 — 1/200 с, у Nikon D3 — 1/250 c.

3

Неверные настройки камеры — проверьте параметр резкости (Sharpness)

Проверьте в настройках камеры значение параметра резкости (Sharpness). Он не должен быть равен минимальному значению (рис. 4)!

Для цифры всегда приходится повышать резкость . Перед матрицей установлен антиалиасный фильтр, который специально немного размывает изображение (см. Дмитрия Рудакова "Резкость... без галстука"). При минимальном значении параметра Sharpness картинка будет очень "мягкой " (рис. 5). Обычно такая установка (ноль для 400D) предполагает, что резкость будет повышаться более аккуратно при дальнейшей обработке снимка.

Рис. 5. Влияние параметра резкости (Sharpness) при съемке в JPEG: Canon 400D, EF-S 18-55, f=18 мм, f/5,6, 1/400 с, ISO 100

Внимание! Установка резкости влияет только на выдаваемый камерой JPEG (не RAW!). Но при этом "родной" RAW-конвертор считывает значение параметра Sharpness из EXIF и использует его как начальную установку (по крайней мере, для камер Canon).

Выше шла речь о так называемом повышении резкости при вводе (Capture Sharpening). Для цифры — это конвертация из RAW (при съемке в JPEG это делает сама камера). Кроме этого резкость приходится повышать при выводе (Output Sharpening). Сюда относится подготовка изображения для печати (например, для струйного принтера приходится "шарпить" сильнее, чем для минилаба), а так же уменьшение изображения для публикации в сети (вывод на экран). Брюс Фрейзер, известный специалист по цифровой обработке, выделяет третью стадию — избирательное повышение резкости (Creative Sharpening). Например, в лицевом портрете для акцентирования внимания на глазах их обычно делают немного резче. Эти и другие вопросы повышения резкости при обработке изображения оставим для отдельной статьи.

Примечание . Фильтр перед матрицей, который немного размывает изображение часто называют антиалиасным или оптическим low-pass фильтром. Этот термин используется скорее не по назначению, а по аналогии. Сам фильтр служит для уменьшения цветовых артефактов и муара в мозаичных матрицах (использующих шаблона Байера) и более правдоподобного преобразования монохромного RAW-изображения в цветное.

Надо отметить, что у камер различных производителей степень влияния "антиалиасного" фильтра различна. Например, замечено, что у Nikon этот фильтр меньше размывает изображение, чем у Canon. Отсюда часто можно слышать "звенящая резкость Никона" или "Nikon D80 резче, чем Canon 30D" и т.п. Это не значит, что Canon менее резок. Просто для достижения Nikon-овского уровня резкости на Canon-е придется задать более высокое значение параметра Sharpness. Кстати говоря у Canon перед матрицей целых три low-pass фильтра .

У некоторых камер вообще нет антиалиасного фильтра, например, у Leica M8. Но за это можно поплатиться. При детальном рассмотрении изображения с Leica M8 на некоторых фактурах, а также в зоне нерезкости, появляется шершавость, как будто фото сняли через какую-то сетку (и это при низком ISO, когда шумы минимальны!). У некоторых камер low-pass фильтр "выключается" опционально, например, у Mamya ZD .

Стоит упомянуть также о трехслойной матрице Foveon. В отличие от мозаичного шаблона здесь каждый пиксель "честный" и фиксирует все три составляющих цвета (RGB). Теоретически такая матрица дает наиболее резкую картинку и обеспечивает наиболее точную детализацию при 100%-ом масштабе изображения. На сегодняшний день эта технология почти не развивается и представлена единственной выпускаемой камерой SIGMA SD14 (разрешение 2640x1760 — 4 мегапикселя).

4

ГРИП мала

ГРИП — глубина резко изображаемого пространства. Нерезкие снимки могут быть обусловлены малой глубиной резкости. Например, для китового объектива на длинном конце f=55 мм при f/5,6 ГРИП будет порядка 7 см (при расстоянии до объекта съемки порядка 1 м). Соответственно объекты за пределами ГРИП будут размыты .

На эту размытость, как правило, жалуются те, кто привык фотографировать цифрокомпактом, у которого большая ГРИП и все объекты в зоне резкости. Малая глубина резкости является одним из преимуществ камер с большой матрицей и обычно используется в художественных целях для придания снимку объема. Размытый задний план позволяет "отделить" объект съемки от фона (рис. 6).

Большинство согласится, что удобно пользоваться центральной точкой фокусировки: наводим центр видоискателя на объект, фокусируемся (нажимаем спуск наполовину), затем компонуем кадр и делаем снимок (выжимаем спуск полностью). Однако здесь есть подводный камень: поворот камеры при кадрировании может привести к потере резкости на объекте съемки (рис. 7).

Рис. 7. Кадрирование поворотом камеры может привести к потере резкости на объекте съемки

Есть несколько способов избежать подобной ошибки:

  • выбирать точку фокусировки вручную (но это не очень удобно: крутить каждый раз колесико);
  • не поворачивать камеру, а смещать параллельно плоскости объекта съемки;
  • использовать ручную фокусировку (MF);
  • увеличить ГРИП прикрыв диафрагму (но при этом уменьшается размытие заднего плана).

Примечание . Фактически блоки сенсоров автофокуса несколько больше чем обозначены меткой в видоискателе. Это можно проиллюстрировать простым примером: начертим на белом листе две линии — одну тонкую, другую толстую (см. рис. 8, а). Расположим камеру под острым углом к листу, ось объектива перпендикулярна линиям. Если при наведении по тонкой линии более контрастная, толстая линия окажется за пределами метки в видоискателе (красная рамка), но в пределах зоны сенсора (обозначено зеленым цветом), то камера может сфокусироваться по этой контрастной линии (рис. 8, б). Такая нормальная работа автофокуса часто расценивается как бэк-фокус. Если же в зоне сенсора автофокуса останется только одна контрастная деталь, то "ложного" бэк-фокуса не происходит (рис. 8, в). Вот почему нельзя проводить тест на бэк-фокус фотографируя линейку — шкала должна располагаться на некотором расстоянии от мишени.

Рис. 8. Фрагмент снимка, поясняющий работу автофокуса: красным цветом обозначена рамка в видоискателе, зеленым — фактический размер сенсора автофокуса

5

Объектив мылит — прикройте диафрагму или смените объектив

Этот тот случай, когда разрешающей способности объектива не хватает для получения резкого изображения. Чем меньше пиксель у матрицы, тем сильнее проявляется "мыльность" оптики. Например, у 400D размер фотосенсора 5,7 мкм, а у 300D фотосенсор 7,4 мкм (что почти в 1,7 раза больше по площади!). Соответственно при съемке "мыльным" объективом (при одних и тех же условиях) у 300D картинка будет лучше (четче), чем у 400D (рис. 9).

Рис. 9. Китовый объектив EF-S 18-55 II сильно мылит на 400D и не позволяет полностью задействовать потенциал 10-ти мегапиксельной матрицы: детализация не намного выше, чем у 6-ти мегапиксельного 300D, а местами даже хуже (фактура теряется из-за размытия). Параметры съемки: f=18 мм, f/3,5, 1/1000 с, ISO 100, конвертация из RAW с помощью Capture One

Примечание : в процессе эксперимента было замечено, что 400D при одной и той же выдержке давал более темное изображение, чем 300D. Возможно это связано с тем, что фактическая чувствительность матрицы у 300D выше, чем выставленная на табло (такое, например, замечено у камер 20D и 5D — установка ISO 100 фактически соответствует чувствительности ISO 125).

Один из вариантов "побороть" мыльность объектива — это прикрыть диафрагму на 2-3 ступени. В этом случае аберрации уменьшаются, и картинка становится резче (рис. 10).

Рис. 10. С прикрытием диафрагмы уменьшается размытие, особенно по углам, и снимок становится резче: Canon 400D, f=18 мм, ISO 100, конвертация из RAW с помощью Capture One

Еще вариант — использовать более резкий объектив . Например, если на 400D поставить макрик EF 100 2,8 MACRO USM (один из самых резких объективов Canon), то получим заметный прирост деталей по сравнению с 300D (рис. 11).

Более подробно о тестировании объектива и оценке резкости см. в статье "Как протестировать объектив перед покупкой. Проверка б/у объектива ".

6

Дифракционное размыливание — слишком малая диафрагма (дырка)

На полностью открытой диафрагме объектив наиболее подвержен аберрациям (мылит сильнее). Поэтому приходится прикрывать диафрагму. И казалось бы на f/22 мы должны получить наиболее резкую картинку. Однако этого не происходит! У 400D уже начиная с диафрагмы f/11 резкость начинает падать из-за дифракционных эффектов — идеальная "точка" размывается в дифракционное пятнышко. Размер этого пятнышка становится соизмерим с пикселем матрицы (5,7 мкм). Отсюда делаем еще один вывод: чем меньше пиксель матрицы тем уже диапазон рабочих диафрагм. Например, для 400D наибольшая резкость китового объектива в широкоугольном положении получается на диафрагме f/5,6 – f/8.

Теоретически оценить "максимально допустимую диафрагму", начиная с которой начинается дифракционное размыливание, можно как d x 2 , где d — размер фотосенсора, мкм. Итак, для 400D получим 5.7 x 2 = 11.4; для 5D — 8.2 x 2 = 16.4. Вообще говоря, размер фотосенсора не так просто узнать. Его можно вычислить примерно — разделить длину матрицы на количество пикселей. Однако более достоверную информацию можно получить только у фирмы-изготовителя. Так, например, если верить Canon у 1D Mark III размер пикселя (7.2 мкм при 10 МПкс) меньше чем у 1D Mark II N (8.2 мкм при 8 МПкс), а размеры фотосенсоров одинаковые. Конструктивно матрица 1D Mark III имеет меньшее расстояние между ячейками сенсоров (см. рис. 13).

Случайные статьи

Вверх